Coalescence in Galton-Watson Trees

K. B. Athreya

Towa State University, Ames, Iowa. U.S.A.

Jan. 11, 2013

K. B. Athreya



Outline

1. The problem of coalescence in trees
2. Binary tree case
3. Galton-Watson trees
1) Definition
2) Basic results
4. Coalescence results for Galton-Watson trees
a) Supercritical (1 < m < 00)
b) Critical (m = 1)
¢) Subcritical (0 <m < 1)
d) Explosive (m = oo, {p;} € D(«), 0 < v < 1)
5. Branching random walks
i) l1<m<oo
ii) m=o00, {p;} € D(a),0<a<1
6. Scaling limits of Bellman-Harris Processes with age
dependent Markov motion: Supercritical and critical cases

K. B. Athreya



The Problem of C

Outline
@ The Problem of Coalescence in Trees




The Problem of Coalescence in Trees

1. The Problem of Coalescence in Trees

Let 7T be a rooted tree. Let {vp1,vn2, -+ ,Unn} be the set of
vertices at the nth level.

Pick two of the v,;’s by SRSWOR (simple random sampling
without replacement) (assuming Z,, > 2) and trace their lines of
descent back in time till they meet for the first time. Call that
generation X,,.

X, is call the coalescence time.
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The Problem of Coalescence in Trees

1. The Problem of Coalescence in Trees

Problems:
a) Find the distribution of X,,.

b) Study its limit as n — oo.

X, is also called the generation number of the LCA (Last
common ancestor) or MRCA (Most recent common ancestor)
etc.

¢) Do the same with choosing k vertices out of Z,.

d) Do the same with choosing all Z,, vertices out of Z,.

Clearly, the answers depend on how 7 is generated.
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Binary Tree Case

2. Binary Tree Case

Consider a binary tree 7 starting with one vertex. The tree
looks like

At level n, there are 2™ vertices, n =0,1,2,---.
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Binary Tree Case

2. Binary Tree Case

Pick two vertices at level n by SRSWOR. Trace their lines back
till they meet. Call that generation X,. Then, for
k=1,2,---.n,

(2;)271—16271—143 B 2k(2k - 1)2n—k2n—k B 192k

3) B 2n(2n — 1) S 1-2m

P(X, <k)=

So, lim P(X, <k)=1-2"% k=12,

n—oo 1
Thus, X, L>G’eo(§).
Similar result is true for any regular b—nary tree, b > 2.

This suggests that the same must be true for a growing
Galton-Watson tree.

K. B. Athreya



Galton-Watson Tree Case

Outline

© Galton-Watson Tree Case
@ Definition
@ Basic results

Definition
Basic results




Galton-Watson Tree Case Definition
Basic results

3.1 Definition and the problem

Let {p;};j>0 be a probability distribution on N* ={0,1,2,---},
{&ni 1 >1,n >0} beiid ~ {p;};>0, Zo be a positive integer

(r.v.),

Zo
Z1 = Zﬁo,z'
i=1
and
Zn
> n>0 ifZ,>0
Zn+1 — i—1
0 if Z,=0
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Galton-Watson Tree Case Definition
Basic results

3.1 Definition and the problem

Then {Z,, }n>0 is called a Galton-Watson branching process
with initial population Zy and offspring distribution {p;};>0,
and &, ; is the number of offspring of the ith individual of the
nth generation.

Now, every individual in the nth generation, n > 1, can be
identified by a finite string

Up = (Z.Oailazéf o 7Zn)

meaning that this individual is the i,th offspring of the
Up—1 = (l0,71, -+ ,in—1) and ug = ip is the number associated
with the ¢gth member of the 0th generation.

K. B. Athreya



Galton-Watson Tree Case

3.1 Definition and the problem

Let A2 ={Z, > 2} and B,, = {Z,, > 1} be events defined on
the space of trees.

Consider the following questions:

3.1 a) Conditioned on A, 2, pick two individuals in the nth
generation by SRSWOR and trace their lines back till they
meet. Call that generation X, ».

What is the distribution of X, »?

What happens to it as n — oco0?
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Galton-Watson Tree Case Definition
Basic results

3.1 Definition and the problem

3.1 b) Do the same thing with k& choices (2 < k < o0) by
SRSWOR from the nth generation. Call the coalescence
time X, ;. Ask the same questions.

3.1 ¢) Do the same thing for the whole population. Call the
coalescence time Y,,. Ask the same questions, i.e.,

What is the distribution of Y,, and what happens to it as
n — oo?
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Basic results

3.2 Some basic results for Galton-Watson trees

o
3.2'1) (Supercritical case) Let po =0, 1 <m = ijj < 00.
j=1
Then
a) P(Z, —» o0|Zy>0)=1.

Z
{ann:nEO}
mn

is a nonnegative martingale and hence

b) (Harris, 1960)

lim W, =W exists w.p.1.

n—oo
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Galton-Watson Tree Case Definition
Basic results

3.2 Some basic results for Galton-Watson trees

(o)
3.2 1) (Supercritical case) Let po =0, 1 <m = ijj < 0.

j=1
Then
¢) (Kesten and Stigum, 1966)
> (jlogj)p; < oo iff E(W|Zo=1)=1
j=1

and then W has an absolutely continuous distribution on
(0, 00) with a positive density.
d) (Seneta and Heyde, 1970)
C, Z,
iC, > % — m and C—n — W w.p.l

n n

and P(0 < W < o0) = 1.
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Galton-Watson Tree Case Definition
Basic results

3.2 Some basic results for Galton-Watson trees

o0
3.2'1) (Supercritical case) Let po =0, 1 <m = ijj < 00.
j=1
Then

e) (Athreya and Schuh, 2003)
EW:W <z)=L(z)

is slowly varying at oco.
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Galton-Watson Tree Case Definition
Basic results

3.2 Some basic results for Galton-Watson trees

o0
3.2 ii) (Critical case) Let m = ijj =1,pj#1forany j > 1
j=1

[ee]
and o2 = Zj2pj —1 < o0. Then
j=1
a) P(Z, — 0|Zo > 0) = 1.

b) (Kolmogrov, 1938)

2
nP(Z, > 0) — % as n — oo.

¢) (Yaglom, 1947)

Z
P<">x
n

2
Zn>0)—>e_ 27 0< < o0.
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Galton-Watson Tree Case Definition
Basic results

3.2 Some basic results for Galton-Watson trees

3.2 i)
d) (Athreya, 2010) For 1 < k < n, let
Z(k)k _
mG = { — ];3 I(Z;klk‘,->0) 1< < Zk}

on the event {Z; > 0}, where {Zj(l? :j > 0} is the G-W
process initiated by the ith individual in the kth generation.
Letk—>oo,n—>oosuchthat%—>u,o<u<1.

Then the sequence of point processes {V,, x}n>1 conditioned
on {Z, > 1} converges weakly to the point process

VE{T]]]:]wza?NU}

where {n;};>1 are i.i.d. exp(1), N, is Geom(u), i.e.,
P(N,=k)=(1—u)uf"1, k> 1 and {n;};>1 and N,, are
independent.
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Galton-Watson Tree Case Definition
Basic results

3.2 Some basic results for Galton-Watson trees

3.2 iii) (Subcritical case) (Yaglom, 1947) Let 0 < m = ijj <L

j=1
Then
a) For j > 1, lim P(Z, = j|Z, > 0) = b, exists, ij =1
=0

(o]

and B(s) = ijsj, 0 < s <1 is the unique solution of the
§=0

functional equation

B(f(s))=mB(s)+(1—s) ,0<s<1

o0

where f(s) = ijsj, in the class of all probability
j=0

generating functions vanishing at 0.
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Galton-Watson Tree Case Definition
Basic results

3.2 Some basic results for Galton-Watson trees

[e.e]
3.2 iii) (Subcritical case) (Yaglom, 1947) Let 0 < m = ijj <L
j=1
Then

b) Y jbj<oo iff Y (jlogj)p; < oo

J=1 Jj=1
P(Z Zy=1 1
o) fim ZEn>0%=1) .
n—oo mm .
> Jb;
j=1
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Galton-Watson Tree Case Definition
Basic results

3.2 Some basic results for Galton-Watson trees

oo
3.2 iii) (Subcritical case) Let 0 < m = ijj < 1. Let Zp be a
j=1

random variable. Then

d) If EZy < oo, then
lim P(Z, = j|Z, >0)=b; ,Vj>1
oo
and if, in addition, Z(] log j)p; < oo then
j=1
= P(Z, >0 EZ
Z,jbj<00 and  lim (T:LL”> ): — o
> Jb;
j=1

=1
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critical (1 < m < oco)
= 1))

n
Coalescence results for Galton-Watson trees ical (0 < m < 1)

Explosive (m = oo, {p;} € D(a), 0

4.1 Supercritical case

Theorem 4.1:

Theorem

(0.)

(Supercritical case) Let pp =0, 1 < m = ijj < 00. Then,
j=1

for almost all trees T,

i) forV1 <k < oo,

lim P(X,2 < k|T)=mp2(T) exists

n—o0

and mp2(7T) 11 as k T oo.
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Su ercritical (1 < m < o)
1 (m=1)
Coalescence results for Galton-Watson trees \nl 1l (0<m < 1)

Explosive (m = oo, {p;} € D(a), 0 < « 1)

4.1 Supercritical case

Theorem 4.1:

Theorem

ii) forVj>2,V1l<k< oo,
lim P(X,; <k|T)=m;(T) exists

and 7, ;(T) 11 as k T oo.
iii) Let p1 > 0. Then, for almost all trees T,

Y, — N(7)

where N(T) =max{j > 1: Z; = 1}. Also,

lim P(Y, =k)=(1—-p)p} ,k>0.
n—oo



Supercritical (1 < m < oc0)
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Explosive (m = oo, {p;} € D(a), 0 < « 1)

4.2 Critical case

Theorem 4.2:

Theorem

oo

(Critical case) Let m =1, py < 1 and 0 = Zj2pj —1 < oo,
j=1

Then, for 0 <u <1,

X
i) lim P( L2

n— oo n

Zy > 2> = Hs(u) exists and for 0 <u <1,

Hy(u) =1— Ep(N,)

where Ny is a geometric random variable with distribution

P(N,=k)=(1—-uw)ur1 k>1




Supercritical (1 < m < o)

Critical (m = 1)

Coalescence results for Galton-Watson trees S z <1)
ive (m = oo, {pj} € D(a), 0 < ¢

4.2 Critical Case

Theorem 4.2:
i) (continued) and for j > 1,

J

>

i=1
)

(Zm)2

=1

where {n; }i>1 are i.i.d. exponential r.v. with Em = 1.
Further, H»(-) is absolutely continuous on [0, 1],
H>(0+) =0, and Hy(1-) = 1.
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Critical (m = 1)

Coalescence results for Galton-Watson trees Subcritical (0 < m < 1)
Explosive (m = oo, {p;} € D(a), 0

4.2 Critical Case

Theorem 4.2:

Theorem

i) for0<u<1,1<k< oo,

n—oo n

X
lim P( WLES

Zn > k:) = Hi(u) exists

and Hy(+) is an a.c. distribution function with Hi(0+) =0
and Hp(1-) = 1.

Y,
iii) for0<u<1, lim P<” <u
n—oo n

Zn21>:u.

Remark: iii) above is also proved in Zubkov (1974) (TPA).
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Coalescence results for Galton-Watson trees S cal (0 < m < 1)

4.3 Subcritical case

Theorem 4.3:

Theorem

(Subcritical case) Let 0 < m = ijj < 1. Then
j=1
, . E¢p(Y)
i) Fork>1, lim P(n— X, >k|Z, >2)= ——= = mg,
) fork =1 fin 2 =D = Fg ) =

say, where

J
7&2 Zk,ilzk,iz J
N =1 .
or(j) = E( ; ; I(Z Zki 2 1))
( > Zyi) ( > Zii = 1) =t
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Supercritical (1 < m < oc0)
Critical (m = 1)
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Explosive (m = oo, {p;} € D(a), 0 < « 1)

4.3 Subcritical case

Theorem 4.3:

Theorem

i) (continued) and

eld) = P(ijzk,z- > 2)

=1

where {Z,; :r >0}, i=1,2,--- are i.i.d. copies of a
Galton- Watson branching process {Z, : r > 0} with Zg =1
and the given offspring distribution {p;};j>0 andY is a
random variable with distribution {b;};>1 where

bj = lim P(Z, =j|Z, >0,Zy=1) which exists.

n—oo
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4.3 Subcritical case

Theorem 4.3:

Theorem

o
i) (continued) Further, iij log jp; < oo, then lim m, =0
= kToo
and hence n — X, conditioned on Z, > 2 converges to a
proper distribution on {1,2,---}.

ii) Fork>1, lim P(n—Y, >k|Z, > 1) =7y exists and

equals
1— Y k—1 _
E( gk>_E<Yq (3; Qk)>
m m

K. B. Athreya




Supercritical (1 < m -

S (m =1)
Coalescence results for Galton-Watson trees S 1(0<m<1)

) p £

e (m =oo0, {p;j} €D

4.3 Subcritical case

Theorem 4.3:

Theorem

ii) (continued) where'Y is a random variable with distribution

P(Y =j)=bj = lim P(Z, =j|Zn, >0,Z0 = 1)

n—o0

and qi, = P(Zy, = 0|Zy = 1).

o
Further, sz] log jpj < 00, then lim 7y = 0. That is,
= k—o0
n — Y, conditioned on {Z,, > 0} converges in distribution
as n — oo to a proper distribution on {1,2,---}.

See also A. Lambert AAP (2003) 35, 1071-189.
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4.4 Explosive case

Theorem 4.4:

Theorem
oo

(Explosive case) Let pg =0, m = ijj = 00, and for some
j=1

0 < a<1,and a function L : (1,00) — (0,00) slowly varying at

00, t.e., V0 < ¢ < 00,

I
(&) —1 asx — oo.
L(z)
Let
> Dj
S N 1 asx — oco.
z*L(x)
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Coalescence results for Galton-Watson trees St l (0 < m

Subcritice <1)
Explosive (m = oo, {p;} € D(a), 0 < o < 1)

4.4 Explosive case

Theorem 4.4:

Theorem

(continued) Then
i) (Davies, 1979) " log Z,, — n w.p.1 and P(0 <n < o0) =1
and n has a continuous distribution.

i) (Grey, 1980) Let {Z}ns1 and {ZP 51 be two i.i.d.
copies of a GWBP with {p;};>1 satisfying the above
hypotheses. Then, w.p.1

ZT(}) { 0  with prob.
—_—— —
z?

Nl N

oo with prob.

K. B. Athreya
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Explosive (m = oo, {pJ} € D(a),0<a<1)

4.4 Explosive case

Theorem 4.4:

Theorem

(continued)

iii) For almost all trees T and k =1,2,---, as n — o0,
P(Xn2 <k|T)—0

and
P(n— X,2 < k) — m(k) exists

and (k) 11 as k T oco.
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Coalescence results for Galton-Watson trees

E‘(plosl\e (m = oo, {pJ} € D(a),0<a<1)

4.4 Explosive case

Theorem 4.4:

Theorem

(continued)

iv) Foranyl<j<ooandk=1,2---
P(X,; <k|T)—0 asn— oo
and P(n — X, ; < k) — mj(k) exists and (k) T 1 as
kT oo.

v) Y, LN(T)Emax{j 1 Zj =1} < oo and

P(Y,=k)— (1—p)pFt k>1




Coalescence results for Galton-Watson trees

Proposition 4.1

The proof of Theorem 4.4 (m = oo explosive case) needs the
following results.

Proposition

Let {Zy}n>0 be a GWBP with offspring distribution
{p;j}i>0 € D(«), (domain of attraction of a stable law of order
a),0<a<l, and Zy=1. Then,

Zr € D(a*) V1 <k < oo.

K. B. Athreya
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Coalescence results for Galton-Watson trees Subc l (0 < m <

Explosive (m = oo, {pJ} € D(a),0<a<1)

Proposition 4.2

Proposition

(Lepage, Woodroffe, Zinn, Ann. Prob., 1980)
Let {X;}i>1 be i.i.d. random variables s.t. P(0 < X1 < 00) =1
and X1 € D(a), 0 < aw < 1. Then

a)

Yo

(5%)

where Yy, is a continuous r.v. with P(0 <Y, <1)=1.
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Coalescence results for Galton-Watson trees Subcritical (0 < m <

Explosive (m = oo, {pJ} € D(a),0<a<1)

Proposition 4.2

Proposition

(continued)
b) EYyT1asa 0.
c) Foranyj=2,3,---,
n

> X7

i=1 d

n J .J
(£%)
=1

and EY, ;11 asa | 0.
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E\plosl\e (7‘71 = oo, {pJ} € D(a),0<a<1)

Basic Calculation

Zk 70

P(X, > k|IT) = S

k k
3 20 (20,1
= - (%)
Z Z
(£29.)( 528 -1)
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Coalescence results for Galton-Watson trees Subcritical (0 < m < 1)

Explosive (m = oo, {p;} € D(a), 0 < o < 1)

Basic Calculation

a) 1<m< oo
Fix k, by Seneta-Heyde, 3C), >

7(F)
’rr:b’;f”: — Wkﬂ' w.p 1
and P(0 < W},; < o0) = 1. So,
Zx
> Wi,

=1
(*) = N2
(5
i=1
and this converges to 0 as k — oo by O’Brien’s theorem

(1980):
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Coalescence results for Galton-Watson trees Subcritical (0 < m < 1)

Explosive (m = oo, {p;} € D(a), 0 < o < 1)

Basic Calculation

a) (continued)
Let {X;}i>1 be i.i.d. positive random variables s.t.
E(X; : X1 < x) is slowly varying at co. Then

max X;
1<i<n p

> X
=1

— 0.
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(0 «
E\plosl\e ('m = oo, {pJ} € D(a),0<a<1)

Basic Calculation

b) m = o0, {p;} € D(a),0 < < 1.

P(n—X,<k) = P(X >n—k)
z 2R
= B Zn(Zn - 1) )

— w(k) = E(Yar)

by Lepage, Woodroff and Zinn, and (k) T 1 as k | oo and
E(Ya) Tlasa]O.

c¢) Similar argument for m =1 and 0 < m < 1. (need point
process result for m = 1 and the Yaglom theorem for
0<m<1).
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Explosive (m = oo, {p;} € D(a), 0 < o < 1)

Summary

1<m<oo: Xppo 4, proper distribution on {0,1,2,---}

m =00, {pj}j>0 € D(a), 0 <a<1l: n— X5 1 . a proper
distribution on {0,1,2,---}

Xn,2

m=1, 0% < co: Z, >2 —% a.c. distribution on [0, 1]

Yo

Zn > 1 —%— uniform distribution on [0,1]
n

0<m<1: (n — Xmg) Ly > 2 4, a proper distribution on

{172,...}

K. B. Athreya
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Coalescence results for Galton-Watson trees Subcritical (0 < m < 1)

Explosive (m = oo, {p;} € D(a), 0 < o < 1)

Summary

i.e.

1 < m < oco: coalescence is near the beginning of the tree.

m =00, {pj}j>0 € D(a), 0 < a < 1: coalescence is near the
present.

m =1, 02 < co: X,z is of order n.

0 <m < 1: X, is near the present.
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l1<m< o
m =00, {p;} € D(a),0 < a <1
Branching random walks

5. Branching Random Walks

Let 7 be a G-W tree with Zy = 1 and offspring distribution
{pjtizo-

Impose on this tree 7 the following movement structure:

If an individual is at « in R and has k children then these k

children move to = + Xy, ;, j = 1,2,--- , k, where
Xk = (Xk1,Xk2, , Xpx) has a joint distribution 74(-) on R*.

Also, the random vector X}, is stochastically independent of the
history up to that generation as well as the movement of the
other individuals of that generation.

K. B. Athreya
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Branching random walks

5. Branching Random Walks

Let Z,, be the number of individuals in the nth generation and
Cn ={zni 1 1 <i < Z,} be the positions of the Z,, individuals
of the nth generation.

A problem of interest is what happens to the point process (,
as n — oo.

K. B. Athreya



1<m< oo
m = o0, {pj} € D(a), 0 < a < 1
Branching random walks '

Theorem 5.1

Theorem

(0.0

Letpo=0,1<m= ijj < oo and 7 be such that
j=1

{Xki:i=1,2,---  k}p>1 are identically distributed.

a) Let EXy1 =0 and EX,f’1 =02 < 00. Then, Yy € R,

W — &(y) (the standard N(0,1) cdf)

n

m mean square.

K. B. Athreya
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Branching random walks '

Theorem 5.1

Theorem

(continued)
b) If X1 € D(a), 0 < a < 2, then 3 ap, by, >

Zan +bny

— Go(y) in mean square,
Zn,

where Go(-) is a standard stable law cdf (of order ).

c) In a), if Y, is the position of a randomly chosen individual
from the nth generation, then, Yy € R,

P(Y, < y/noy) — ®(y)

and similarly for b).

K. B. Athreya
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Branching random walks

Theorem 5.1

The proof depends on the fact when pg = 0 and
o0

l<m= ijj < 00, the coalescence time X, > is way back in
j=1

time and so the positions of two randomly chosen individuals in

the nth generation are essentially independent and has the

marginal distribution of a random walk at step n.

K. B. Athreya
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Branching random walks

Theorem 5.2

Theorem

(Athreya-Hong, 2011)

Let m = oo, {pj}j>0 € D(v), 0 < < 1. Let
{Xk,i:1<i<Ek}r>1 be identically distributed. Let EXy1 =0
and EX/%1 = 0% < 00. Then

Zn(v/noy)  d
Zn

dy

where §y is Bernoulli(®(y)), i.e.

5 — 1, with prob. ®(y)
YL 0, with prob. 1 — ®(y)

K. B. Athreya
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m = o0, {pj} € D(a), 0 < a <1

Branching random walks

Theorem 5.2

The proof is based on the fact that

k
E<Z”(Z\/ﬁay)> — ®(y) for k=1,2.

This, in turn, is due to the fact that X, o, the coalescence time
for any two individuals chosen at random from the nth
generation is such that n — X,, ; converges to a proper
distribution (Theorem 4.4) and hence their positions differ only
by an amount that converges in distribution.

This can be strengthened to joint convergence of

Zn

K. B. Athreya



1<m< oo
m = o0, {pj} € D(a), 0 < a <1

Branching random walks

Theorem 5.3

Theorem

(Athreya-Hong, 2011)
Under the hypothesis of Theorem 5.2,

a) for any —oo < y1 < Y2 < 00,

(Zn(\/ﬁayl) Zn(V/noy2)
Z, ’ Zn

) L (5:(0(51)), 52(0(2)))

which takes values (0,0), (0,1) and (1,1) with probabilities
1—(y2), ®(y2) — P(y1) and (1), respectively.

K. B. Athreya



l1<m< oo
m = o0, {pj} € D(a), 0 < a <1
Branching random walks

Theorem 5.3

Theorem

(continued)
b) for any —oco < y1 < yp < -+ < Yy < 00,

<W;1gi§k> — s (81, 5 8%))

n

where each d; is 0 or 1 and further 6; =1 = 0; =1 for
7 >1 and

P(6;=0,0,=0,- 6,1 =00 =1,--- 6, =1)

= P(0j-1=0,0; =1) = d(y;) — ®(y;-1)-

K. B. Athreya



1<m< o
m = o0, {pj} € D(a), 0 < a <1

Branching random walks

Theorem 5.3

This suggests that

{Zn(y) = %ijgy) —00<y< oo}

converges in the Skorohod Space D(—o0, 00) weakly to
{X(y) = In<y, —00 <y < o0}
where N is a N(0,1) r.v.

This needs to be proved. Only tightness needs to be established.

K. B. Athreya
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m = o0, {pj} € D(a), 0 < a <1

Branching random walks

Theorem 5.4

Theorem

If Y, is the position of a randomly chosen individual in the nth

generation, then in all cases (as long as pg = 0), given the tree
(random walk) T, Vy € R,

P(Y, < Vnoy|T) —2— 6, ~ Ber(d(y))

This is so since
Z,
P(Y, < Vaoy ) = Z0/170)
n
and this in turn implies, Vy € R,

P(Yn < Vnoy) — ®(y).

K. B. Athreya



l1<m< oo
m = o0, {pj} € D(a), 0 < a <1
Branching random walks

Remark 1

Remark

Theorem 5.1 holds under the following weaker assumption
about 7, the distribution of (X 1, Xz2, -+, Xk 1), that does
not require { X}, 1}x>1 to be identically distributed. It suffices to
assume:

i) Vk > 1, (X1, Xz2, -, Xik) has a distribution that is
invariant under permutation.

ii) If {pg}r>1 is the offspring distribution with

[e'e) o
> pkEXP; <00, 1<m=) kpp<oo, po=0.
k=1 k=1

K. B. Athreya



1<m< oo

m = o0, {pj} € D(a), 0 < a <1

Branching random walks

Theorem 5.1’

00
Now let w= ZpkEXk’l < 00, 0'2 = Z?’:lpkElel — M2.

k=1
Let (= {zn1,Tn2,  ,Znz,} be as in Theorem 5.1. Under

the above assumptions, the following holds: for Yy € R,

Zn(np + yoy/n)
Zn

Z,
1 n
A ;_1 I(wp; < np+yoy/n)

—  P(y) in mean square.

K. B. Athreya



1<m< o
m = o0, {pj} € D(a), 0 < a <1

Branching random walks

Application to energy cascades

Consider a particle that under goes fission.

Assume each particle spits into a random number of new
particles with distribution {pg}r>1.

Assume that the energy x of the parent is split to
{2Yp1,2Yk0, -+ ,2Yp} for each of the offspring particle if the
parent splits into k offspring particles.

K. B. Athreya



1<m< o
m = oo, {pj} € D(a)

Branching random walks

Application to energy cascades

Then the energy e, i, of a particle I,, in the nth generation can
be represented as
20Yu, Yu, - -+ Yu,

where u,, t,_1,"--, u1 are the addresses of the individual I,,
and its ancestors and xg is the energy of the ancestor 1.

Assume Y,,,’s are independent. Clearly, the distribution of Y,
depends on the number of offspring of individual u;_; and

{ log ey,.1,,, I, € nth generation }

is a branching random walk.

K. B. Athreya
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m = o0, {pj} € D(a), 0 < a <1

Branching random walks

Theorem 5.2”

So, from Theorem 5.1’, one gets the following.

Let { Xy =logYy,;: 1 <i<k}lp>1 and {py}r>1 satisfy the
conditions of Theorem 5.1'. Then, Vy € R, as n — oo,

Zn(np + yo/n)
Zn,

Z
1 n
Z. ;1 I(log en; < np + yov/n)

—  ®(y) in mean square.

K. B. Athreya
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Branching random walks

Open Cases

Open Cases: m=1and 0 <m < 1.
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Scaling Limits of B-H processes with age dependent
Markov motion

Suppose we are given:

i) an offspring distribution {p;},;>1 on N* ={0,1,2,---}

ii) a lifetime distribution G(+) on (0,00) and non-latice

iii) a real-valued Markov process 7(-) on [0, c0) with n(0) =0
First, generate a BH tree 7 with offspring distribution {p;};>0

and lifetime distribution G(-) and an initial population at ¢ = 0
of size Zj.

Now, suppose that the initial population is located at xg;,
t=1,2,---,Zo and with ages ag;, i = 1,2,---, Zp.

K. B. Athreya
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Scaling Limits of B-H processes with age dependent
Markov motion

Assume each individual moves during its lifetime of length L
according to Markov process {z +n(t) : 0 <t < L}.

That is, if an individual is born at time 7 and at location x and
has lifetime L, then its movement

{X(t):T<t<7t+L}
is distributed as
{z+nt—7):7<t<7T+L}

where {n(-)} is a real-valued Markov process on [0, c0) with
n(0) = 0.

K. B. Athreya
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Scaling Limits of B-H processes with age dependent
Markov motion

Assume that, for each individual, the lifetime L, the number of
offspring ¢ and the movement process 7(-) are independent and
the triplets (L, &, n) over all the individuals in the tree are i.i.d.

Let Z; be the population size at time ¢ and
Cy = {(at,iaxt,z’) 1< < Zt}

be the age and position configuration of all the individuals alive
at time ¢.

The object of study is the point process {C; : t > 0}.

K. B. Athreya
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Theorem 6.1

Theorem

(Supercritical case) (Athreya-Athreya-Iyer, Bernoulli 2011)
(0.0

Letpp=0,1<m=Y_jp; <oo. Let En(0) =0,
j=1

v(t) = En?(t) < oo, sup v(s) < oo and
0<s<t

o = / e “u(s)dG(s) < 0o
[0,0)
where 0 < a < 0o is the Malthusian parameter defined by
m e *dG(s) = 1.

[0,00)

K. B. Athreya
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Theorem 6.1

Theorem

(continued) Let (ai, X;) be the age and position of a randomly
chosen individual at time t. Then

a)
(at, ij%) 4w,V

where U and V' are independent and U has pdf proportional
to eiw(l*G(m)) on (0,00) and V is N<O, %> where

o
00
o = m/ l,e—ocach(a:)'
0

K. B. Athreya
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Theorem 6.1

Theorem

(continued)

b) Let
Y,(A x B) = ZIAX,B atz,7’£)

be the scaled empirical measure of
Ct = {(atyi,:ct,i) 01 < ) < Zt}

Then, Y; 4, (U, V), where U and V are as in a).

The proof of this depends on the following results of
independent interest.

K. B. Athreya
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Proposition 6.1

Proposition

Let My be the generation number of a randomly chosen
individual from Zy (those alive at time t). Let

{Lt; 11 <t < M} be the lifetimes of the ancestors of this
individual. Then

a) ast — oo,

K. B. Athreya
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Proposition 6.1

Proposition

(continued)

b) for any h:[0,00) — R Borel measurable and
|h(z)le”**dG(x) < 00, 0 < a < 00,
)

[0,00
1
P( M;h(Lt’i — ca(h)‘ > e) —0 ast— oo.
where co(h) =m h(z)e  **dG(x).
[0,00)

K. B. Athreya
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Proposition 6.2

Both these results depend on a size-biasing estimate of a large
deviation result, namely,

Proposition

Let {N(t) : t > 0} be a renewal process generated by G. Let
1 <m < oo and « be the Malthusian parameter, i.e.,

m e “*dG(x) = 1. Then, for Ve > 0,
[0,00)

B(mMOr( TR - 2 > 9 ) —0

where pio = m/ ze “CdG(z).
0

K. B. Athreya
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Proposition 6.2

Note that since
N(t)
5 — —  w.p.l

where p = / xdG(x), the event
[0,00)

’N(t) 1
t Ha

is an event of large deviation.

K. B. Athreya
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Proposition 6.3

Proposition

(Coalescence time for BH process) (Athreya-Hong, 2011)
Choose two individuals from those alive at time t at random by
SRSWOR and trace their lines back in time to find the time of
death ;2 of their last common ancestor. Let p, = 0,

o

1<m:ijj<oo. Then, for 0 < s < oo,
j=1

lim P(r2 <s)=H(s) euxists

t—o0

and H(-) is an absolutely continuous d. f. on (0,00) with

H(0) =0, H(c0) = 1.

K. B. Athreya
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Proposition 6.3

Same is true for the coalescence of r individuals chosen at
random from those alive at time ¢ (for 1 < r < 00).

However, the coalescence time for the whole population goes
back to the beginning.

Open problems: Extend the results of Theorem 5.2 (BRW with
m = 00, {pj}j>0 € D(v), 0 < av < 1) to the present
setting.

K. B. Athreya
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Theorem 6.2

Theorem

o
(Crritical case) Let m =1, ijpj < o0, En(t) =0,
j=1

v(t) = En?(t) < oo, sup v(s) < oo, Vt, and
0<s<t

Y= /[O,Oo)v(s)dG(s) < 0.

Let Ay = {Z; > 0}. Then,

K. B. Athreya
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Theorem 6.2

Theorem

(continued) conditioned on Ay, the random vector

Xi
ap, —
bt
for a randomly chosen individual converges as t — oo in

distribution to (U, V) where U and V are independent with U
. 1
having a pdf ;(1 —G()) on (0,00) and V ~ N (0, %)

K. B. Athreya
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Theorem 6.3

Theorem

Assume the hypothesis of Theorem 6.2. Then, conditioned on
Ay = {Z; > 0}, the empirical measure

Xii
Yi(A x B) ZIAXB i, ﬁ)

converges as t — oo in distribution to a random measure v
characterized by its moment sequence

where p € Cif (RT x R).

K. B. Athreya
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Theorem 6.3

The my(y) can be expressed in terms of the coalescence times
of k randomly chosen individuals alive at time t¢.

The proof depends on the following results.

K. B. Athreya
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Proposition 6.4

Proposition

o
Let m =1, prj < 00, G(-) non-latice. Then
j=1

i) Ve>0

P(|%-3] >

Zt>0>—>0 ast — 0o.

K. B. Athreya
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Proposition 6.4

(continued)

ii) the coalescence time 1o of two randomly chosen individuals
from time t (conditioned on Z; > 0) satisfies

; T
lim P( 2t <z

t—o00 t

Zy > O) = H(z) exists

for all 0 < x < 1.

iii) A similar result for the convergence of coalescence of k
individuals.

K. B. Athreya
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Remark

Note that, in the supercritical case (1 < m < oo, pop = 0) BH
process, T>; converged to a proper distribution as ¢ — oo.

. . T2t .
And, in the critical case, —= conditioned on Z; > 0 converges

in distribution. That is , 7 is of order .

Related work: Lambert, Legall

K. B. Athreya
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