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1. The Problem of Coalescence in Trees

Let T be a rooted tree. Let {vn1, vn2, · · · , vnn} be the set of
vertices at the nth level.

Pick two of the vni’s by SRSWOR (simple random sampling
without replacement) (assuming Zn ≥ 2) and trace their lines of
descent back in time till they meet for the first time. Call that
generation Xn.

Xn is call the coalescence time.
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1. The Problem of Coalescence in Trees

Problems:
a) Find the distribution of Xn.
b) Study its limit as n→∞.

Xn is also called the generation number of the LCA (Last
common ancestor) or MRCA (Most recent common ancestor)
etc.

c) Do the same with choosing k vertices out of Zn.
d) Do the same with choosing all Zn vertices out of Zn.

Clearly, the answers depend on how T is generated.
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2. Binary Tree Case

Consider a binary tree T starting with one vertex. The tree
looks like
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At level n, there are 2n vertices, n = 0, 1, 2, · · · .
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2. Binary Tree Case

Pick two vertices at level n by SRSWOR. Trace their lines back
till they meet. Call that generation Xn. Then, for
k = 1, 2, · · · , n,

P (Xn < k) =

(2k

2

)
2n−k2n−k(2n

2

) =
2k(2k − 1)2n−k2n−k

2n(2n − 1)
=

1− 2−k

1− 2−n

So, lim
n→∞

P (Xn < k) = 1− 2−k, k = 1, 2, · · · .

Thus, Xn
d−−−→Geo(

1

2
).

Similar result is true for any regular b−nary tree, b ≥ 2.
This suggests that the same must be true for a growing
Galton-Watson tree.
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Definition
Basic results

3.1 Definition and the problem

Let {pj}j≥0 be a probability distribution on N+ ≡ {0, 1, 2, · · · },
{ξn,i : i ≥ 1, n ≥ 0} be i.i.d ∼ {pj}j≥0, Z0 be a positive integer
(r.v.),

Z1 =

Z0∑
i=1

ξ0,i

and

Zn+1 =


Zn∑
i=1

ξn,i , n ≥ 0 if Zn > 0

0 if Zn = 0

K. B. Athreya
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Definition
Basic results

3.1 Definition and the problem

Then {Zn}n≥0 is called a Galton-Watson branching process
with initial population Z0 and offspring distribution {pj}j≥0,
and ξn,i is the number of offspring of the ith individual of the
nth generation.
Now, every individual in the nth generation, n ≥ 1, can be
identified by a finite string

un ≡ (i0, i1, i2, · · · , in)

meaning that this individual is the inth offspring of the
un−1 ≡ (i0, i1, · · · , in−1) and u0 = i0 is the number associated
with the i0th member of the 0th generation.
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Definition
Basic results

3.1 Definition and the problem

Let An,2 ≡ {Zn ≥ 2} and Bn ≡ {Zn > 1} be events defined on
the space of trees.

Consider the following questions:

3.1 a) Conditioned on An,2, pick two individuals in the nth
generation by SRSWOR and trace their lines back till they
meet. Call that generation Xn,2.

What is the distribution of Xn,2?

What happens to it as n→∞?

K. B. Athreya
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Definition
Basic results

3.1 Definition and the problem

3.1 b) Do the same thing with k choices (2 ≤ k <∞) by
SRSWOR from the nth generation. Call the coalescence
time Xn,k. Ask the same questions.

3.1 c) Do the same thing for the whole population. Call the
coalescence time Yn. Ask the same questions, i.e.,

What is the distribution of Yn and what happens to it as
n→∞?

K. B. Athreya
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Basic results

3.2 Some basic results for Galton-Watson trees

3.2 i) (Supercritical case) Let p0 = 0, 1 < m =
∞∑
j=1

jpj <∞.

Then
a) P (Zn →∞|Z0 > 0) = 1.

b) (Harris, 1960) {
Wn ≡

Zn

mn
: n ≥ 0

}
is a nonnegative martingale and hence

lim
n→∞

Wn ≡W exists w.p.1.

K. B. Athreya
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Definition
Basic results

3.2 Some basic results for Galton-Watson trees

3.2 i) (Supercritical case) Let p0 = 0, 1 < m =
∞∑
j=1

jpj <∞.

Then
c) (Kesten and Stigum, 1966)

∞∑
j=1

(j log j)pj <∞ iff E(W |Z0 = 1) = 1

and then W has an absolutely continuous distribution on
(0,∞) with a positive density.

d) (Seneta and Heyde, 1970)

∃Cn 3 Cn+1

Cn
→ m and

Zn

Cn
→W w.p.1

and P (0 < W <∞) = 1.

K. B. Athreya
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Definition
Basic results

3.2 Some basic results for Galton-Watson trees

3.2 i) (Supercritical case) Let p0 = 0, 1 < m =
∞∑
j=1

jpj <∞.

Then

e) (Athreya and Schuh, 2003)

E(W : W ≤ x) ≡ L(x)

is slowly varying at ∞.

K. B. Athreya
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Definition
Basic results

3.2 Some basic results for Galton-Watson trees

3.2 ii) (Critical case) Let m ≡
∞∑
j=1

jpj = 1, pj 6= 1 for any j ≥ 1

and σ2 ≡
∞∑
j=1

j2pj − 1 <∞. Then

a) P (Zn → 0|Z0 > 0) = 1.

b) (Kolmogrov, 1938)

nP (Zn > 0) → σ2

2
as n→∞.

c) (Yaglom, 1947)

P

(
Zn

n
> x

∣∣∣∣Zn > 0

)
→ e−

2
σ2 x , 0 < x <∞.

K. B. Athreya
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Definition
Basic results

3.2 Some basic results for Galton-Watson trees

3.2 ii)
d) (Athreya, 2010) For 1 ≤ k ≤ n, let

Vn,k ≡
{
Z

(k)
n−k,i

n− k
I
(Z

(k)
n−k,i>0)

: 1 ≤ i ≤ Zk

}
on the event {Zk > 0}, where {Z(k)

j,i : j ≥ 0} is the G-W
process initiated by the ith individual in the kth generation.
Let k →∞, n→∞ such that k

n → u, o < u < 1.
Then the sequence of point processes {Vn,k}n≥1 conditioned
on {Zn ≥ 1} converges weakly to the point process

V ≡ {ηj : j = 1, 2, · · · , Nu}

where {ηj}j≥1 are i.i.d. exp(1), Nu is Geom(u), i.e.,
P (Nu = k) = (1− u)uk−1, k ≥ 1 and {ηj}j≥1 and Nu are
independent.

K. B. Athreya
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Definition
Basic results

3.2 Some basic results for Galton-Watson trees

3.2 iii) (Subcritical case) (Yaglom, 1947) Let 0 < m ≡
∞∑
j=1

jpj < 1.

Then

a) For j ≥ 1, lim
n→∞

P (Zn = j|Zn > 0) ≡ bj exists,
∞∑

j=0

bj = 1

and B(s) ≡
∞∑

j=0

bjs
j , 0 ≤ s ≤ 1 is the unique solution of the

functional equation

B(f(s)) = mB(s) + (1− s) , 0 ≤ s ≤ 1

where f(s) ≡
∞∑

j=0

pjs
j , in the class of all probability

generating functions vanishing at 0.

K. B. Athreya



The Problem of Coalescence in Trees
Binary Tree Case

Galton-Watson Tree Case
Coalescence results for Galton-Watson trees

Branching random walks
Scaling limits of Bellman-Harris Processes with age dependent Markov motion: Supercritical and critical cases

Definition
Basic results

3.2 Some basic results for Galton-Watson trees

3.2 iii) (Subcritical case) (Yaglom, 1947) Let 0 < m ≡
∞∑
j=1

jpj < 1.

Then

b)
∞∑

j=1

jbj <∞ iff
∞∑

j=1

(j log j)pj <∞.

c) lim
n→∞

P (Zn > 0|Z0 = 1)

mn
=

1
∞∑

j=1
jbj

.
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Definition
Basic results

3.2 Some basic results for Galton-Watson trees

3.2 iii) (Subcritical case) Let 0 < m ≡
∞∑
j=1

jpj < 1. Let Z0 be a

random variable. Then
d) If EZ0 <∞, then

lim
n→∞

P (Zn = j|Zn > 0) = bj ,∀j ≥ 1

and if, in addition,
∞∑

j=1

(j log j)pj <∞ then

∞∑
j=1

jbj <∞ and lim
n→∞

P (Zn > 0)

mn
=

EZ0
∞∑

j=1
jbj

.

K. B. Athreya
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Supercritical (1 < m < ∞)
Critical (m = 1)
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4.1 Supercritical case

Theorem 4.1:

Theorem

(Supercritical case) Let p0 = 0, 1 < m ≡
∞∑
j=1

jpj <∞. Then,

for almost all trees T ,
i) for ∀1 ≤ k <∞,

lim
n→∞

P (Xn,2 < k|T ) ≡ πk,2(T ) exists

and πk,2(T ) ↑ 1 as k ↑ ∞.

K. B. Athreya
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Supercritical (1 < m < ∞)
Critical (m = 1)
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4.1 Supercritical case

Theorem 4.1:
Theorem
ii) for ∀j ≥ 2, ∀1 ≤ k <∞,

lim
n→∞

P (Xn,j < k|T ) ≡ πk,j(T ) exists

and πk,j(T ) ↑ 1 as k ↑ ∞.
iii) Let p1 > 0. Then, for almost all trees T ,

Yn → N(T )

where N(T ) = max{j ≥ 1 : Zj = 1}. Also,

lim
n→∞

P (Yn = k) = (1− p1)p
k
1 , k ≥ 0.

K. B. Athreya
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4.2 Critical case

Theorem 4.2:
Theorem

(Critical case) Let m = 1, p1 < 1 and σ2 =
∞∑
j=1

j2pj − 1 <∞,

Then, for 0 < u < 1,

i) lim
n→∞

P

(
Xn,2

n

∣∣∣∣Zn ≥ 2

)
≡ H2(u) exists and for 0 < u < 1,

H2(u) ≡ 1− Eϕ(Nu)

where Nu is a geometric random variable with distribution

P (Nu = k) = (1− u)uk−1 , k ≥ 1

K. B. Athreya
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4.2 Critical Case

Theorem 4.2:

Theorem
i) (continued) and for j ≥ 1,

ϕ(j) ≡ E

( j∑
i=1

η2
i( j∑

i=1
ηi
)2
)

where {ηi}i≥1 are i.i.d. exponential r.v. with Eη1 = 1.
Further, H2(·) is absolutely continuous on [0, 1],
H2(0+) = 0, and H2(1−) = 1.

K. B. Athreya
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4.2 Critical Case

Theorem 4.2:
Theorem
ii) for 0 < u < 1, 1 < k <∞,

lim
n→∞

P

(
Xn,k

n
< u

∣∣∣∣Zn ≥ k

)
≡ Hk(u) exists

and Hk(·) is an a.c. distribution function with Hk(0+) = 0
and Hk(1−) = 1.

iii) for 0 < u < 1, lim
n→∞

P

(
Yn
n
< u

∣∣∣∣Zn ≥ 1

)
= u.

Remark: iii) above is also proved in Zubkov (1974) (TPA).
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4.3 Subcritical case

Theorem 4.3:

Theorem

(Subcritical case) Let 0 < m ≡
∞∑
j=1

jpj < 1. Then

i) For k ≥ 1, lim
n→∞

P (n−Xn > k|Zn ≥ 2) =
Eφk(Y )

Eψk(Y )
≡ πk,

say, where

φk(j) = E

( j∑
i1 6=i2=1

Zk,i1Zk,i2

( j∑
i=1

Zk,i
)( j∑

i=1
Zk,i − 1

)I(
j∑
i=1

Zk,i ≥ 1)

)

K. B. Athreya
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4.3 Subcritical case

Theorem 4.3:
Theorem

i) (continued) and

ψk(j) = P

( j∑
i=1

Zk,i ≥ 2

)
where {Zr,i : r ≥ 0}, i = 1, 2, · · · are i.i.d. copies of a
Galton-Watson branching process {Zr : r ≥ 0} with Z0 = 1
and the given offspring distribution {pj}j≥0 and Y is a
random variable with distribution {bj}j≥1 where

bj ≡ lim
n→∞

P (Zn = j|Zn > 0, Z0 = 1) which exists.

K. B. Athreya
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Supercritical (1 < m < ∞)
Critical (m = 1)
Subcritical (0 < m < 1)
Explosive (m = ∞, {pj} ∈ D(α), 0 < α < 1)

4.3 Subcritical case

Theorem 4.3:

Theorem

i) (continued) Further, if
∞∑
j=1

j log jpj <∞, then lim
k↑∞

πk = 0

and hence n−Xn conditioned on Zn ≥ 2 converges to a
proper distribution on {1, 2, · · · }.

ii) For k ≥ 1, lim
n→∞

P (n− Yn > k|Zn ≥ 1) ≡ π̃k exists and
equals

E

(
1− qYk
mk

)
− E

(
Y qk−1(1− qk)

mk

)
K. B. Athreya
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4.3 Subcritical case

Theorem 4.3:

Theorem
ii) (continued) where Y is a random variable with distribution

P (Y = j) = bj = lim
n→∞

P (Zn = j|Zn > 0, Z0 = 1)

and qk = P (Zk = 0|Z0 = 1).

Further, if
∞∑
j=1

j log jpj <∞, then lim
k→∞

π̃k = 0. That is,

n− Yn conditioned on {Zn > 0} converges in distribution
as n→∞ to a proper distribution on {1, 2, · · · }.

See also A. Lambert AAP (2003) 35, 1071-189.
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Subcritical (0 < m < 1)
Explosive (m = ∞, {pj} ∈ D(α), 0 < α < 1)

4.4 Explosive case

Theorem 4.4:
Theorem

(Explosive case) Let p0 = 0, m =
∞∑
j=1

jpj = ∞, and for some

0 < α < 1, and a function L : (1,∞) → (0,∞) slowly varying at
∞, i.e., ∀0 < c <∞,

L(cx)

L(x)
→ 1 as x→∞.

Let ∑
j>x

pj

xαL(x)
→ 1 as x→∞.
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Supercritical (1 < m < ∞)
Critical (m = 1)
Subcritical (0 < m < 1)
Explosive (m = ∞, {pj} ∈ D(α), 0 < α < 1)

4.4 Explosive case

Theorem 4.4:

Theorem
(continued) Then

i) (Davies, 1979) αn logZn → η w.p.1 and P (0 < η <∞) = 1
and η has a continuous distribution.

ii) (Grey, 1980) Let {Z(1)
n }n≥1 and {Z(2)

n }n≥1 be two i.i.d.
copies of a GWBP with {pj}j≥1 satisfying the above
hypotheses. Then, w.p.1

Z
(1)
n

Z
(2)
n

→

{
0 with prob. 1

2

∞ with prob. 1
2
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Supercritical (1 < m < ∞)
Critical (m = 1)
Subcritical (0 < m < 1)
Explosive (m = ∞, {pj} ∈ D(α), 0 < α < 1)

4.4 Explosive case

Theorem 4.4:

Theorem
(continued)
iii) For almost all trees T and k = 1, 2, · · · , as n→∞,

P (Xn,2 < k|T ) → 0

and
P (n−Xn,2 < k) → π2(k) exists

and π2(k) ↑ 1 as k ↑ ∞.
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Supercritical (1 < m < ∞)
Critical (m = 1)
Subcritical (0 < m < 1)
Explosive (m = ∞, {pj} ∈ D(α), 0 < α < 1)

4.4 Explosive case

Theorem 4.4:
Theorem
(continued)
iv) For any 1 < j <∞ and k = 1, 2, · · ·

P (Xn,j < k|T ) → 0 as n→∞

and P (n−Xn,j < k) → πj(k) exists and πj(k) ↑ 1 as
k ↑ ∞.

v) Yn
d−−→ N(T ) ≡ max{j : Zj = 1} <∞ and

P (Yn = k) → (1− p1)p
k−1
1 , k ≥ 1.
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Supercritical (1 < m < ∞)
Critical (m = 1)
Subcritical (0 < m < 1)
Explosive (m = ∞, {pj} ∈ D(α), 0 < α < 1)

Proposition 4.1

The proof of Theorem 4.4 (m = ∞ explosive case) needs the
following results.

Proposition

Let {Zn}n≥0 be a GWBP with offspring distribution
{pj}j≥0 ∈ D(α), (domain of attraction of a stable law of order
α), 0 < α < 1, and Z0 = 1. Then,

Zk ∈ D(αk) ∀1 ≤ k <∞.
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Supercritical (1 < m < ∞)
Critical (m = 1)
Subcritical (0 < m < 1)
Explosive (m = ∞, {pj} ∈ D(α), 0 < α < 1)

Proposition 4.2

Proposition

(Lepage, Woodroffe, Zinn, Ann. Prob., 1980)
Let {Xi}i≥1 be i.i.d. random variables s.t. P (0 < X1 <∞) = 1
and X1 ∈ D(α), 0 < α < 1. Then
a)

n∑
i=1

X2
i(

n∑
i=1

Xi

)2

d−−−→ Yα

where Yα is a continuous r.v. with P (0 < Yα < 1) = 1.
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Supercritical (1 < m < ∞)
Critical (m = 1)
Subcritical (0 < m < 1)
Explosive (m = ∞, {pj} ∈ D(α), 0 < α < 1)

Proposition 4.2

Proposition

(continued)
b) EYα ↑ 1 as α ↓ 0.
c) For any j = 2, 3, · · · ,

n∑
i=1

Xj
i(

n∑
i=1

Xi

)j d−−−→ Yα,j

and EYα,j ↑ 1 as α ↓ 0.
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Supercritical (1 < m < ∞)
Critical (m = 1)
Subcritical (0 < m < 1)
Explosive (m = ∞, {pj} ∈ D(α), 0 < α < 1)

Basic Calculation

P (Xn ≥ k|T ) =

Zk∑
i=1

(Z(k)
n−k,i

2

)
(
Zn

2

)

=

Zk∑
i=1

Z
(k)
n−k,i

(
Z

(k)
n−k,i − 1

)
(

Zk∑
i=1

Z
(k)
n−k,i

)(
Zk∑
i=1

Z
(k)
n−k,i − 1

) (∗)
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Supercritical (1 < m < ∞)
Critical (m = 1)
Subcritical (0 < m < 1)
Explosive (m = ∞, {pj} ∈ D(α), 0 < α < 1)

Basic Calculation

a) 1 < m <∞
Fix k, by Seneta-Heyde, ∃Cn 3

Z
(k)
n−k,i
mn−k →Wk,i w.p.1

and P (0 < Wk,i <∞) = 1. So,

(∗) →

Zk∑
i=1

W 2
k,i(

Zk∑
i=1

Wk,i

)2

and this converges to 0 as k →∞ by O’Brien’s theorem
(1980):
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Supercritical (1 < m < ∞)
Critical (m = 1)
Subcritical (0 < m < 1)
Explosive (m = ∞, {pj} ∈ D(α), 0 < α < 1)

Basic Calculation

a) (continued)
Let {Xi}i≥1 be i.i.d. positive random variables s.t.
E(X1 : X1 ≤ x) is slowly varying at ∞. Then

max
1≤i≤n

Xi

n∑
i=1

Xi

p−−−→ 0.
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Supercritical (1 < m < ∞)
Critical (m = 1)
Subcritical (0 < m < 1)
Explosive (m = ∞, {pj} ∈ D(α), 0 < α < 1)

Basic Calculation

b) m = ∞, {pj} ∈ D(α), 0 < α < 1.

P (n−Xn ≤ k) = P (Xn ≥ n− k)

= E

(Zn−k∑
i=1

Z
(n−k)
k,i

(
Z

(n−k)
k,i − 1

)
Zn(Zn − 1)

)
→ π(k) ≡ E

(
Yα,k

)
by Lepage, Woodroff and Zinn, and π(k) ↑ 1 as k ↑ ∞ and
E
(
Yα
)
↑ 1 as α ↓ 0.

c) Similar argument for m = 1 and 0 < m < 1. (need point
process result for m = 1 and the Yaglom theorem for
0 < m < 1).
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Supercritical (1 < m < ∞)
Critical (m = 1)
Subcritical (0 < m < 1)
Explosive (m = ∞, {pj} ∈ D(α), 0 < α < 1)

Summary

1 < m <∞: Xn,2
d−−−→ a proper distribution on {0, 1, 2, · · · }

m = ∞, {pj}j≥0 ∈ D(α), 0 < α < 1: n−Xn,2
d−−−→ a proper

distribution on {0, 1, 2, · · · }

m = 1, σ2 <∞:
Xn,2

n

∣∣∣∣Zn ≥ 2
d−−−→ a.c. distribution on [0, 1]

Yn
n

∣∣∣∣Zn ≥ 1
d−−−→ uniform distribution on [0, 1]

0 < m < 1:
(
n−Xn,2

)∣∣∣∣Zn ≥ 2
d−−−→ a proper distribution on

{1, 2, · · · }
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Supercritical (1 < m < ∞)
Critical (m = 1)
Subcritical (0 < m < 1)
Explosive (m = ∞, {pj} ∈ D(α), 0 < α < 1)

Summary

i.e.
1 < m <∞: coalescence is near the beginning of the tree.

m = ∞, {pj}j≥0 ∈ D(α), 0 < α < 1: coalescence is near the
present.

m = 1, σ2 <∞: Xn,2 is of order n.

0 < m < 1: Xn,2 is near the present.
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Outline
1 The Problem of Coalescence in Trees
2 Binary Tree Case
3 Galton-Watson Tree Case

Definition
Basic results

4 Coalescence results for Galton-Watson trees
Supercritical (1 < m <∞)
Critical (m = 1)
Subcritical (0 < m < 1)
Explosive (m = ∞, {pj} ∈ D(α), 0 < α < 1)

5 Branching random walks
1 < m <∞
m = ∞, {pj} ∈ D(α), 0 < α < 1

6 Scaling limits of Bellman-Harris Processes with age
dependent Markov motion: Supercritical and critical cases
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1 < m < ∞
m = ∞, {pj} ∈ D(α), 0 < α < 1

5. Branching Random Walks

Let T be a G-W tree with Z0 = 1 and offspring distribution
{pj}j≥0.

Impose on this tree T the following movement structure:

If an individual is at x in R and has k children then these k
children move to x+Xk,j , j = 1, 2, · · · , k, where
Xk ≡ (Xk,1, Xk,2, · · · , Xk,k) has a joint distribution πk(·) on Rk.

Also, the random vector Xk is stochastically independent of the
history up to that generation as well as the movement of the
other individuals of that generation.
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1 < m < ∞
m = ∞, {pj} ∈ D(α), 0 < α < 1

5. Branching Random Walks

Let Zn be the number of individuals in the nth generation and
ζn ≡ {xn,i : 1 ≤ i ≤ Zn} be the positions of the Zn individuals
of the nth generation.

A problem of interest is what happens to the point process ζn
as n→∞.
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1 < m < ∞
m = ∞, {pj} ∈ D(α), 0 < α < 1

Theorem 5.1

Theorem

Let p0 = 0, 1 < m ≡
∞∑
j=1

jpj <∞ and πk be such that

{Xk,i : i = 1, 2, · · · , k}k≥1 are identically distributed.

a) Let EXk,1 = 0 and EX2
k,1 = σ2 <∞. Then, ∀y ∈ R,

Zn(
√
nσy)

Zn
→ Φ(y) (the standard N(0, 1) cdf)

in mean square.
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1 < m < ∞
m = ∞, {pj} ∈ D(α), 0 < α < 1

Theorem 5.1

Theorem
(continued)
b) If Xk,1 ∈ D(α), 0 < α ≤ 2, then ∃ an, bn 3

Zan+bny

Zn
→ Gα(y) in mean square,

where Gα(·) is a standard stable law cdf (of order α).
c) In a), if Yn is the position of a randomly chosen individual

from the nth generation, then, ∀y ∈ R,

P (Yn ≤
√
nσy) → Φ(y)

and similarly for b).
K. B. Athreya
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1 < m < ∞
m = ∞, {pj} ∈ D(α), 0 < α < 1

Theorem 5.1

The proof depends on the fact when p0 = 0 and

1 < m ≡
∞∑
j=1

jpj <∞, the coalescence time Xn,2 is way back in

time and so the positions of two randomly chosen individuals in
the nth generation are essentially independent and has the
marginal distribution of a random walk at step n.
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1 < m < ∞
m = ∞, {pj} ∈ D(α), 0 < α < 1

Theorem 5.2

Theorem
(Athreya-Hong, 2011)
Let m = ∞, {pj}j≥0 ∈ D(α), 0 < α < 1. Let
{Xk,i : 1 ≤ i ≤ k}k≥1 be identically distributed. Let EXk,1 = 0
and EX2

k,1 = σ2 <∞. Then

Zn(
√
nσy)

Zn

d−−−→ δy

where δy is Bernoulli(Φ(y)), i.e.

δy =

{
1, with prob. Φ(y)
0, with prob. 1− Φ(y)
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1 < m < ∞
m = ∞, {pj} ∈ D(α), 0 < α < 1

Theorem 5.2

The proof is based on the fact that

E

(
Zn(

√
nσy)

Zn

)k
→ Φ(y) for k = 1, 2.

This, in turn, is due to the fact that Xn,2, the coalescence time
for any two individuals chosen at random from the nth
generation is such that n−Xn,k converges to a proper
distribution (Theorem 4.4) and hence their positions differ only
by an amount that converges in distribution.

This can be strengthened to joint convergence of

Zn(
√
nσy)

Zn
, i = 1, 2, · · · , k

K. B. Athreya



The Problem of Coalescence in Trees
Binary Tree Case

Galton-Watson Tree Case
Coalescence results for Galton-Watson trees

Branching random walks
Scaling limits of Bellman-Harris Processes with age dependent Markov motion: Supercritical and critical cases

1 < m < ∞
m = ∞, {pj} ∈ D(α), 0 < α < 1

Theorem 5.3

Theorem
(Athreya-Hong, 2011)

Under the hypothesis of Theorem 5.2,
a) for any −∞ < y1 < y2 <∞,(

Zn(
√
nσy1)

Zn
,
Zn(

√
nσy2)

Zn

)
d−−−→

(
δ1(Φ(y1)), δ2(Φ(y2))

)
which takes values (0, 0), (0, 1) and (1, 1) with probabilities
1− Φ(y2), Φ(y2)− Φ(y1) and Φ(y1), respectively.
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1 < m < ∞
m = ∞, {pj} ∈ D(α), 0 < α < 1

Theorem 5.3

Theorem
(continued)

b) for any −∞ < y1 < y2 < · · · < yk <∞,(
Zn(

√
nσyi)

Zn
: 1 ≤ i ≤ k

)
d−−−→

(
δ1, · · · , δk)

)
where each δi is 0 or 1 and further δi = 1 ⇒ δj = 1 for
j ≥ i and

P (δ1 = 0, δ2 = 0, · · · , δj−1 = 0, δj = 1, · · · , δk = 1)

= P (δj−1 = 0, δj = 1) = Φ(yj)− Φ(yj−1).
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1 < m < ∞
m = ∞, {pj} ∈ D(α), 0 < α < 1

Theorem 5.3

This suggests that{
Zn(y) =

Zn(
√
nσy)

Zn
,−∞ < y <∞

}
converges in the Skorohod Space D(−∞,∞) weakly to{

X(y) ≡ IN≤y,−∞ < y <∞
}

where N is a N(0, 1) r.v.

This needs to be proved. Only tightness needs to be established.
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1 < m < ∞
m = ∞, {pj} ∈ D(α), 0 < α < 1

Theorem 5.4

Theorem
If Yn is the position of a randomly chosen individual in the nth
generation, then in all cases (as long as p0 = 0), given the tree
(random walk) T , ∀y ∈ R,

P (Yn ≤
√
nσy|T )

d−−−→ δy ∼ Ber(Φ(y))

This is so since

P (Yn ≤
√
nσy|T ) =

Zn(
√
nσy)

Zn

and this in turn implies, ∀y ∈ R,

P (Yn ≤
√
nσy) → Φ(y).
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1 < m < ∞
m = ∞, {pj} ∈ D(α), 0 < α < 1

Remark 1

Remark
Theorem 5.1 holds under the following weaker assumption
about πk, the distribution of (Xk,1, Xx,2, · · · , Xk,k), that does
not require {Xk,1}k≥1 to be identically distributed. It suffices to
assume:

i) ∀k ≥ 1, (Xk,1, Xx,2, · · · , Xk,k) has a distribution that is
invariant under permutation.

ii) If {pk}k≥1 is the offspring distribution with

∞∑
k=1

pkEX
2
k,1 <∞, 1 < m =

∞∑
k=1

kpk <∞, p0 = 0.
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1 < m < ∞
m = ∞, {pj} ∈ D(α), 0 < α < 1

Theorem 5.1′

Now let µ =
∞∑
k=1

pkEXk,1 <∞, σ2 =
∑∞

k=1 pkEX
2
k,1 − µ2.

Theorem
Let ζn ≡ {xn,1, xn,2, · · · , xn,Zn} be as in Theorem 5.1. Under
the above assumptions, the following holds: for ∀y ∈ R,

Zn(nµ+ yσ
√
n)

Zn
≡ 1

Zn

Zn∑
i=1

I(xn,i ≤ nµ+ yσ
√
n)

→ Φ(y) in mean square.
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1 < m < ∞
m = ∞, {pj} ∈ D(α), 0 < α < 1

Application to energy cascades

Consider a particle that under goes fission.

Assume each particle spits into a random number of new
particles with distribution {pk}k≥1.

Assume that the energy x of the parent is split to
{xYk,1, xYk,2, · · · , xYk,k} for each of the offspring particle if the
parent splits into k offspring particles.
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1 < m < ∞
m = ∞, {pj} ∈ D(α), 0 < α < 1

Application to energy cascades

Then the energy en,In of a particle In in the nth generation can
be represented as

x0Yu1Yu2 · · ·Yun

where un, un−1,· · · , u1 are the addresses of the individual In
and its ancestors and x0 is the energy of the ancestor 1.

Assume Yui ’s are independent. Clearly, the distribution of Yui

depends on the number of offspring of individual ui−1 and{
log en,In , In ∈ nth generation

}
is a branching random walk.
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1 < m < ∞
m = ∞, {pj} ∈ D(α), 0 < α < 1

Theorem 5.2′′

So, from Theorem 5.1′, one gets the following.

Theorem
Let {Xk,i ≡ log Yk,i : 1 ≤ i ≤ k}k≥1 and {pk}k≥1 satisfy the
conditions of Theorem 5.1′. Then, ∀y ∈ R, as n→∞,

Zn(nµ+ yσ
√
n)

Zn
≡ 1

Zn

Zn∑
i=1

I(log en,i ≤ nµ+ yσ
√
n)

→ Φ(y) in mean square.
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1 < m < ∞
m = ∞, {pj} ∈ D(α), 0 < α < 1

Open Cases

Open Cases: m = 1 and 0 < m < 1.
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Scaling Limits of B-H processes with age dependent
Markov motion

Suppose we are given:
i) an offspring distribution {pj}j≥1 on N+ ≡ {0, 1, 2, · · · }
ii) a lifetime distribution G(·) on (0,∞) and non-latice
iii) a real-valued Markov process η(·) on [0,∞) with η(0) = 0

First, generate a BH tree T with offspring distribution {pj}j≥0

and lifetime distribution G(·) and an initial population at t = 0
of size Z0.

Now, suppose that the initial population is located at x0,i,
i = 1, 2, · · · , Z0 and with ages a0,i, i = 1, 2, · · · , Z0.
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Scaling Limits of B-H processes with age dependent
Markov motion

Assume each individual moves during its lifetime of length L
according to Markov process {x+ η(t) : 0 ≤ t ≤ L}.

That is, if an individual is born at time τ and at location x and
has lifetime L, then its movement{

X(t) : τ ≤ t < τ + L
}

is distributed as {
x+ η(t− τ) : τ ≤ t < τ + L

}
where {η(·)} is a real-valued Markov process on [0,∞) with
η(0) = 0.
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Scaling Limits of B-H processes with age dependent
Markov motion

Assume that, for each individual, the lifetime L, the number of
offspring ξ and the movement process η(·) are independent and
the triplets (L, ξ, η) over all the individuals in the tree are i.i.d.

Let Zt be the population size at time t and

Ct ≡
{
(at,i, xt,i) : 1 ≤ i ≤ Zt

}
be the age and position configuration of all the individuals alive
at time t.

The object of study is the point process {Ct : t ≥ 0}.
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Theorem 6.1

Theorem
(Supercritical case) (Athreya-Athreya-Iyer, Bernoulli 2011)

Let p0 = 0, 1 < m ≡
∞∑
j=1

jpj <∞. Let Eη(0) ≡ 0,

v(t) ≡ Eη2(t) <∞, sup
0≤s≤t

v(s) <∞ and

ψα ≡
∫

[0,∞)
e−αsv(s)dG(s) <∞

where 0 < α <∞ is the Malthusian parameter defined by

m

∫
[0,∞)

e−αsdG(s) = 1.

K. B. Athreya



The Problem of Coalescence in Trees
Binary Tree Case

Galton-Watson Tree Case
Coalescence results for Galton-Watson trees

Branching random walks
Scaling limits of Bellman-Harris Processes with age dependent Markov motion: Supercritical and critical cases

Theorem 6.1

Theorem
(continued) Let (at, Xt) be the age and position of a randomly
chosen individual at time t. Then
a) (

at,
Xt√
t

)
d−−−→ (U, V )

where U and V are independent and U has pdf proportional

to e−αx
(
1−G(x)

)
on (0,∞) and V is N

(
0,
ψα
µα

)
where

µα = m

∫ ∞

0
xe−αxdG(x).
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Theorem 6.1

Theorem
(continued)
b) Let

Yy(A×B) =
1

Zt

Zt∑
i=1

IA×B
(
at,i,

xt,i√
t

)
be the scaled empirical measure of
Ct ≡

{
(at,i, xt,i) : 1 ≤ i ≤ Zt

}
.

Then, Yt
d−−−→ (U, V ), where U and V are as in a).

The proof of this depends on the following results of
independent interest.
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Proposition 6.1

Proposition
Let Mt be the generation number of a randomly chosen
individual from Zt (those alive at time t). Let
{Lt,i : 1 ≤ t ≤Mt} be the lifetimes of the ancestors of this
individual. Then
a) as t→∞,

Mt

t
→ 1

µα
w.p.1.
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Proposition 6.1

Proposition

(continued)
b) for any h : [0,∞) → R Borel measurable and∫

[0,∞)
|h(x)|e−αxdG(x) <∞, 0 < α <∞,

P

(∣∣∣∣ 1

Mt

Mt∑
i=1

h(Lt,i − cα(h)

∣∣∣∣ > ε

)
→ 0 as t→∞.

where cα(h) = m

∫
[0,∞)

h(x)e−αxdG(x).
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Proposition 6.2

Both these results depend on a size-biasing estimate of a large
deviation result, namely,

Proposition

Let {N(t) : t ≥ 0} be a renewal process generated by G. Let
1 < m <∞ and α be the Malthusian parameter, i.e.,

m

∫
[0,∞)

e−αxdG(x) = 1. Then, for ∀ε > 0,

e−αtE

(
mN(t)I

(∣∣N(t)

t
− 1

µα

∣∣ > ε
))

= 0

where µα = m

∫ ∞

0
xe−αxdG(x).

K. B. Athreya



The Problem of Coalescence in Trees
Binary Tree Case

Galton-Watson Tree Case
Coalescence results for Galton-Watson trees

Branching random walks
Scaling limits of Bellman-Harris Processes with age dependent Markov motion: Supercritical and critical cases

Proposition 6.2

Note that since
N(t)

t
→ 1

µ
w.p.1

where µ =

∫
[0,∞)

xdG(x), the event

∣∣∣∣N(t)

t
− 1

µα

∣∣∣∣ > ε

is an event of large deviation.
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Proposition 6.3

Proposition

(Coalescence time for BH process) (Athreya-Hong, 2011)
Choose two individuals from those alive at time t at random by
SRSWOR and trace their lines back in time to find the time of
death τt,2 of their last common ancestor. Let po = 0,

1 < m =
∞∑
j=1

jpj <∞. Then, for 0 < s <∞,

lim
t→∞

P (τt,2 < s) = H(s) exists

and H(·) is an absolutely continuous d. f. on (0,∞) with
H(0) = 0, H(∞) = 1.
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Proposition 6.3

Same is true for the coalescence of r individuals chosen at
random from those alive at time t (for 1 < r <∞).

However, the coalescence time for the whole population goes
back to the beginning.

Open problems: Extend the results of Theorem 5.2 (BRW with
m = ∞, {pj}j≥0 ∈ D(α), 0 < α < 1) to the present
setting.
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Theorem 6.2

Theorem

(Critical case) Let m = 1,
∞∑
j=1

j2pj <∞, Eη(t) ≡ 0,

v(t) = Eη2(t) <∞, sup
0≤s≤t

v(s) <∞, ∀t, and

ψ =

∫
[0,∞)

v(s)dG(s) <∞.

Let At ≡ {Zt > 0}. Then,
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Theorem 6.2

Theorem
(continued) conditioned on At, the random vector(

at,
Xt

t

)
for a randomly chosen individual converges as t→∞ in
distribution to (U, V ) where U and V are independent with U

having a pdf
1

µ

(
1−G(·)

)
on (0,∞) and V ∼ N

(
0, ψµ

)
.
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Theorem 6.3

Theorem
Assume the hypothesis of Theorem 6.2. Then, conditioned on
At ≡ {Zt > 0}, the empirical measure

Yt(A×B) ≡ 1

Zt

Zt∑
i=1

IA×B
(
at,i,

Xt,i√
t

)
converges as t→∞ in distribution to a random measure ν
characterized by its moment sequence

mk(ϕ) ≡ E
(
〈ν, ϕ〉

)k
where ϕ ∈ C+

b (R+ × R).
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Theorem 6.3

The mk(ϕ) can be expressed in terms of the coalescence times
of k randomly chosen individuals alive at time t.

The proof depends on the following results.
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Proposition 6.4

Proposition

Let m = 1,
∞∑
j=1

j2pj <∞, G(·) non-latice. Then

i) ∀ ε > 0

P

(∣∣∣Mt

t
− 1

µ

∣∣∣ > ε

∣∣∣∣Zt > 0

)
→ 0 as t→∞.
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Proposition 6.4

Proposition

(continued)
ii) the coalescence time τ2,t of two randomly chosen individuals

from time t (conditioned on Zt > 0) satisfies

lim
t→∞

P

(
τ2,t
t

≤ x

∣∣∣∣Zt > 0

)
= H(x) exists

for all 0 ≤ x ≤ 1.
iii) A similar result for the convergence of coalescence of k

individuals.
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Remark

Note that, in the supercritical case (1 < m <∞, p0 = 0) BH
process, τ2,t converged to a proper distribution as t→∞.

And, in the critical case,
τ2,t
t

conditioned on Zt > 0 converges
in distribution. That is , τ2,t is of order t.

Related work: Lambert, Legall
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